Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 97: 13-24, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35334407

RESUMEN

PURPOSE: Phantoms mimicking human tissue heterogeneity and intensity are required to establish radiomic features robustness in Computed Tomography (CT) images. We developed inserts with two different techniques for the radiomic study of Non-Small Cell Lung Cancer (NSCLC) lesions. METHODS: We developed two insert prototypes: two 3D-printed made of glycol-modified polyethylene terephthalate (PET-G), and nine with sodium polyacrylate plus iodinated contrast medium. The inserts were put in a handcraft phantom (HeLLePhant). We also analysed four materials of a commercial homogeneous phantom (Catphan® 424) and collected 29 NSCLC patients for comparison. All the CT acquisitions were performed with the same clinical protocol and scanner at 120kVp. The HeLLePhant phantom was scanned ten times in fixed condition at 120kVp and 100kVp for repeatability investigation. We extracted 153 radiomic features using Pyradiomics. To compare the features between phantoms and patients, we computed how many phantom features fell in the range between 10th and 90th percentile of the corresponding patient values. We deemed repeatable the features with a coefficient of variation (CV) less than or equal to 0.10. RESULTS: The best similarity with the patients was obtained with the polyacrylate inserts (55.6-90.2%), the worst with Catphan (15.7-19.0%). For the PET-G inserts 35.3% and 36.6% of the features match the patient range. We found high repeatability for all the inserts of the HeLLePhant phantom (74.3-100% at 120kVp, 75.7-97.9% at 100kVp), and observed a texture dependency in repeatability. CONCLUSIONS: Our study shows a promising way to construct heterogeneous inserts mimicking a target tissue for radiomic studies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
2.
Insights Imaging ; 13(1): 38, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35254525

RESUMEN

BACKGROUND AND PURPOSE: In the retrospective-prospective multi-center "Blue Sky Radiomics" study (NCT04364776), we plan to test a pre-defined radiomic signature in a series of stage III unresectable NSCLC patients undergoing chemoradiotherapy and maintenance immunotherapy. As a necessary preliminary step, we explore the influence of different image-acquisition parameters on radiomic features' reproducibility and apply methods for harmonization. MATERIAL AND METHODS: We identified the primary lung tumor on two computed tomography (CT) series for each patient, acquired before and after chemoradiation with i.v. contrast medium and with different scanners. Tumor segmentation was performed by two oncological imaging specialists (thoracic radiologist and radio-oncologist) using the Oncentra Masterplan® software. We extracted 42 radiomic features from the specific ROIs (LIFEx). To assess the impact of different acquisition parameters on features extraction, we used the Combat tool with nonparametric adjustment and the longitudinal version (LongComBat). RESULTS: We defined 14 CT acquisition protocols for the harmonization process. Before harmonization, 76% of the features were significantly influenced by these protocols. After, all extracted features resulted in being independent of the acquisition parameters. In contrast, 5% of the LongComBat harmonized features still depended on acquisition protocols. CONCLUSIONS: We reduced the impact of different CT acquisition protocols on radiomic features extraction in a group of patients enrolled in a radiomic study on stage III NSCLC. The harmonization process appears essential for the quality of radiomic data and for their reproducibility. ClinicalTrials.gov Identifier: NCT04364776, First Posted:April 28, 2020, Actual Study Start Date: April 15, 2020, https://clinicaltrials.gov/ct2/show/NCT04364776 .

3.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503081

RESUMEN

OBJECTIVES: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. METHODS: One hundred patients with breast cancer receiving NACT in a single center (01/2017-06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). RESULTS: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model's AUC (95% CI) was 0.81 (0.71-0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51-0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73-0.92). CONCLUSIONS: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.

4.
Magn Reson Med ; 85(3): 1713-1726, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970859

RESUMEN

PURPOSE: To investigate the repeatability and reproducibility of radiomic features extracted from MR images and provide a workflow to identify robust features. METHODS: T2 -weighted images of a pelvic phantom were acquired on three scanners of two manufacturers and two magnetic field strengths. The repeatability and reproducibility of features were assessed by the intraclass correlation coefficient and the concordance correlation coefficient, respectively, and by the within-subject coefficient of variation, considering repeated acquisitions with and without phantom repositioning, and with different scanner and acquisition parameters. The features showing intraclass correlation coefficient or concordance correlation coefficient >0.9 were selected, and their dependence on shape information (Spearman's ρ > 0.8) analyzed. They were classified for their ability to distinguish textures, after shuffling voxel intensities of images. RESULTS: From 944 two-dimensional features, 79.9% to 96.4% showed excellent repeatability in fixed position across all scanners. A much lower range (11.2% to 85.4%) was obtained after phantom repositioning. Three-dimensional extraction did not improve repeatability performance. Excellent reproducibility between scanners was observed in 4.6% to 15.6% of the features, at fixed imaging parameters. In addition, 82.4% to 94.9% of the features showed excellent agreement when extracted from images acquired with echo times 5 ms apart, but decreased with increasing echo-time intervals, and 90.7% of the features exhibited excellent reproducibility for changes in pulse repetition time. Of nonshape features, 2.0% was identified as providing only shape information. CONCLUSION: We showed that radiomic features are affected by MRI protocols and propose a general workflow to identify repeatable, reproducible, and informative radiomic features to ensure robustness of clinical studies.


Asunto(s)
Imagen por Resonancia Magnética , Pelvis , Frecuencia Cardíaca , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
5.
Phys Med ; 71: 71-81, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32092688

RESUMEN

PURPOSE: To develop a phantom for methodological radiomic investigation on Magnetic Resonance (MR) images of female patients affected by pelvic cancer. METHODS: A pelvis-shaped container was filled with a MnCl2 solution reproducing the relaxation times (T1, T2) of muscle surrounding pelvic malignancies. Inserts simulating multi-textured lesions were embedded in the phantom. The relaxation times of muscle and tumour were measured on an MR scanner on healthy volunteers and patients; T1 and T2 of MnCl2 solutions were evaluated with a relaxometer to find the concentrations providing a match to in vivo relaxation times. Radiomic features were extracted from the phantom inserts and the patients' lesions. Their repeatability was assessed by multiple measurements. RESULTS: Muscle T1 and T2 were 1128 (806-1378) and 51 (40-65) ms, respectively. The phantom reproduced in vivo values within 13% (T1) and 12% (T2). T1 and T2 of tumour tissue were 1637 (1396-2121) and 94 (79-101) ms, respectively. The phantom insert best mimicking the tumour agreed within 7% (T1) and 24% (T2) with in vivo values. Out of 1034 features, 75% (95%) had interclass correlation coefficient greater than 0.9 on T1 (T2)-weighted images, reducing to 33% (25%) if the phantom was repositioned. The most repeatable features on phantom showed values in agreement with the features extracted from patients' lesions. CONCLUSIONS: We developed an MR phantom with inserts mimicking both relaxation times and texture of pelvic tumours. As exemplified with repeatability assessment, such phantom is useful to investigate features robustness and optimise the radiomic workflow on pelvic MR images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Músculos/diagnóstico por imagen , Neoplasias Pélvicas/diagnóstico por imagen , Neoplasias Pélvicas/radioterapia , Pelvis/diagnóstico por imagen , Radiometría , Adulto , Cloruros/química , Femenino , Voluntarios Sanos , Humanos , Compuestos de Manganeso/química , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...